Part Number Hot Search : 
WP7113YC ISL28207 2SD18 4C7V5 MC68HC0 CDC3207 EPA2188B D1001
Product Description
Full Text Search
 

To Download LT1001 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FEATURES
s
LT1001 Precision Operational Amplifier DESCRIPTION
The LT (R)1001 significantly advances the state-of-theart of precision operational amplifiers. In the design, processing, and testing of the device, particular attention has been paid to the optimization of the entire distribution of several key parameters. Consequently, the specifications of the lowest cost, commercial temperature device, the LT1001C, have been dramatically improved when compared to equivalent grades of competing precision amplifiers. Essentially, the input offset voltage of all units is less than 50V (see distribution plot below). This allows the LT1001AM/883 to be specified at 15V. Input bias and offset currents, common-mode and power supply rejection of the LT1001C offer guaranteed performance which were previously attainable only with expensive, selected grades of other devices. Power dissipation is nearly halved compared to the most popular precision op amps, without adversely affecting noise or speed performance. A beneficial by-product of lower dissipation is decreased warm-up drift. Output drive capability of the LT1001 is also enhanced with voltage gain guaranteed at 10 mA of load current. For similar performance in a dual precision op amp, with guaranteed matching specifications, see the LT1002. Shown below is a platinum resistance thermometer application.
, LTC and LT are registered trademarks of Linear Technology Corporation.
s
s
s
s
s
s
Guaranteed Low Offset Voltage LT1001AM 15V max LT1001C 60V max Guaranteed Low Drift LT1001AM 0.6V/C max LT1001C 1.0V/C max Guaranteed Low Bias Current LT1001AM 2nA max LT1001C 4nA max Guaranteed CMRR LT1001AM 114dB min LT1001C 110dB min Guaranteed PSRR LT1001AM 110dB min LT1001C 106dB min Low Power Dissipation LT1001AM 75mW max LT1001C 80mW max Low Noise 0.3VP-P
APPLICATIONS
s s s s
Thermocouple amplifiers Strain gauge amplifiers Low level signal processing High accuracy data acquisition
Linearized Platinum Resistance Thermometer with 0.025C Accuracy Over 0 to 100C
+15 R plat. 1k = 0C 330k* 20k 1MEG.**
1.2k** 10k*
GAIN TRIM
-
LT1001 6 10k* 3 2
1 f
NUMBER OF UNITS
2
-
LT1001 6 200 LINEARITY TRIM OUTPUT 0 TO 10V = 0 TO 100C
3
+
+
LM129
90k*
20k OFFSET TRIM
10k*
0 -60 -40 0 20 40 60 -20 INPUT OFFSET VOLTAGE (MICROVOLTS)
1001 TA02
* ULTRONIX 105A WIREWOUND ** 1% FILM PLATINUM RTD 118MF (ROSEMOUNT, INC.)
Trim sequence: trim offset (0 C = 1000.0), trim linearity (35 C = 1138.7), trim gain (100 C = 1392.6). Repeat until all three points are fixed with 0.025C.
1001 TA01
U
U
Typical Distribution of Offset Voltage VS = 15V, TA = 25C
200 954 UNITS FROM THREE RUNS
150
100
50
1
LT1001
ABSOLUTE MAXIMUM RATINGS
Supply Voltage ...................................................... 22V Differential Input Voltage ...................................... 30V Input Voltage ........................................................ 22V Output Short Circuit Duration ......................... Indefinite Operating Temperature Range LT1001AM/LT1001M ....................... - 55C to 150C LT1001AC/LT1001C .............................. 0C to 125C Storage: All Devices.......................... - 65C to 150C Lead Temperature (Soldering, 10 sec.)................. 300C
PACKAGE/ORDER INFORMATION
TOP VIEW OFFSET ADJUST 8 1 -IN 2 3 +IN 4 V- (CASE) H PACKAGE METAL CAN - + 5 NC 7 V+ 6 OUT
ORDER PART NUMBER LT1001AMH/883 LT1001MH LT1001ACH LT1001CH
TOP VIEW VOS TRIM 1 -IN 2 +IN 3 V- 4 - + VOS 8 TRIM 7 V+ 6 OUT 5 NC
J8 PACKAGE N8 PACKAGE 8 PIN HERMETIC DIP 8 PIN PLASTIC DIP S8 PACKAGE 8 PIN PLASTIC SO
LT1001AMJ8/883 LT1001MJ8 LT1001ACJ8 LT1001CJ8 LT1001ACN8 LT1001CN8 LT1001CS8 S8 PART MARKING 1001
ELECTRICAL CHARACTERISTICS
SYMBOL PARAMETER VOS VOS Time IOS Ib en en AVOL CMRR PSRR Rin VOUT SR GBW Pd Input Offset Voltage Long Term Input Offset Voltage Stability Input Offset Current Input Bias Current Input Noise Voltage Input Noise Voltage Density Large Signal Voltage Gain Common Mode Rejection Ratio Power Supply Rejection Ratio Input Resistance Differential Mode Input Voltage Range Maximum Output Voltage Swing Slew Rate Gain-Bandwidth Product Power Dissipation RL 2k RL 1k
VS = 15V, TA = 25C, unless otherwise noted
LT1001AM/883 LT1001AC MIN TYP MAX 7 15 10 0.2 0.3 0.5 25 1.0 2.0 2.0 0.6 18.0 11.0 400 250 110 106 15 13 13 12 0.1 0.4 75 6 LT1001M/LT1001C MIN TYP MAX 18 60
CONDITIONS LT1001AM/883 Note 1 LT1001AC Notes 2 and 3
UNITS V V/month nA nA Vp-p nVHz V/mV dB dB M V V V V/s MHz
0.3 0.4 0.7 0.3 10.5 9.8 800 500 126 123 80 14 14 13.5 0.25 0.8 48 4
1.5 3.8 4.0 0.6 18.0 11.0
0.1Hz to 10Hz (Note 2) fO = 10Hz (Note 5) fO = 1000Hz (Note 2) RL 2k, VO = 12V RL 1k VO = 10V VCM = 13V VS = 3V to 18V 450 300 114 110 30 13 13 12 0.1 0.4
0.3 10.3 9.6 800 500 126 123 100 14 14 13.5 0.25 0.8 46 4
RL 2k (Note 4) (Note 4) No load No load, VS = 3V
80 8
See Notes on page 3.
2
U
W
U
U
WW
W
mW
LT1001
ELECTRICAL CHARACTERISTICS
SYMBOL PARAMETER VOS Input Offset Voltage VOS Temp IOS IB AVOL CMRR PSRR VOUT Pd Average Offset Voltage Drift Input Offset Current Input Bias Current Large Signal Voltage Gain Common Mode Rejection Ratio Power Supply Rejection Ratio Input Voltage Range Output Voltage Swing Power Dissipation RL 2k No load CONDITIONS
VS = 15V, - 55C TA 125C, unless otherwise noted
LT1001AM/883 MIN TYP MAX 30 60 0.2 0.8 1.0 300 110 104 13 700 122 117 14 55 90 0.6 4.0 4.0 200 106 100 13 12.0 MIN LT1001M TYP MAX 45 160 0.3 1.2 1.5 700 120 117 14 13.5 60 100 1.0 7.6 8.0 UNITS V V/C nA nA V/mV dB dB V V mW
q q q q
RL 2k, VO = 10V VCM = 13V VS = 3 to 18V
q q q q q q
12.5 13.5
VS = 15V, 0C TA 70C, unless otherwise noted
SYMBOL PARAMETER VOS Input Offset Voltage VOS Temp IOS IB AVOL CMRR PSRR VOUT Pd Average Offset Voltage Drift Input Offset Current Input Bias Current Large Signal Voltage Gain Common Mode Rejection Ratio Power Supply Rejection Ratio Input Voltage Range Output Voltage Swing Power Dissipation RL 2k No load RL 2k, VO = 10V VCM = 13V VS = 3V to 18V CONDITIONS
q q q q q q q q q q
MIN
LT1001AC TYP MAX 20 60 0.2 0.5 0.7 0.6 3.5 3.5
MIN
LT1001C TYP MAX 30 110 0.3 0.6 1.0 1.0 5.3 5.5
UNITS V V/C nA nA V/mV dB dB V V
350 110 106 13
750 124 120 14 50 85
250 106 103 13 12.5
750 123 120 14 13.8 55 90
12.5 13.8
mW
The q denotes the specifications which apply over the full operating temperature range. Note 1: Offset voltage for the LT1001AM/883 and LT1001AC are measured after power is applied and the device is fully warmed up. All other grades are measured with high speed test equipment, approximately 1 second after power is applied. The LT1001AM/883 receives 168 hr. burn-in at 125C. or equivalent.
Note 2: This parameter is tested on a sample basis only. Note 3: Long Term Input Offset Voltage Stability refers to the averaged trend line of VOS versus Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in VOS during the first 30 days are typically 2.5V. Note 4: Parameter is guaranteed by design. Note 5: 10Hz noise voltage density is sample tested on every lot. Devices 100% tested at 10Hz are available on request.
3
LT1001 TYPICAL PERFORMANCE CHARACTERISTICS
Typical Distribution of Offset Voltage Drift with Temperature
100 265 UNITS TESTED
50 40 30 VS = 15V LT1001
CHANGE IN OFFSET VOLTAGE (MICROVOLTS)
80
OFFSET VOLTAGE (V)
NUMBER OF UNITS
60
40
20
-1.0
-0.6 -0.2 0 +0.2 +0.6 +1.0 OFFSET VOLTAGE DRIFT (V/C)
1001 G01
0.1Hz to 10Hz Noise
100
OFFSET VOLTAGE CHANGE (V)
NOISE VOLTAGE 100nV/DIV
VOLTAGE NOISE nV/Hz
30
1/f CORNER 4Hz VOLTAGE
3
CURRENT NOISE pA/Hz
0
2
6 4 TIME (SECONDS)
Input Bias and Offset Current vs Temperature
1.4
INPUT BIAS AND OFFSET CURRENTS (nA)
1.0 0.8 0.6 BIAS CURRENT 0.4 0.2
INPUT BIAS CURRENT (nA)
VS = 15V
VCM
0.5 0 -.5
INVERTING OR NON-INVERTING INPUT BIAS CURRENT (mA)
1.2
OFFSET CURRENT 50 25 75 0 TEMPERATURE (C) 100 125 -1.5 -15
-50 -25
4
UW
8
1001 G04
1001 G07
Offset Voltage Drift withTemperature of Representative Units
Warm-Up Drift
4
VS = 15V TA = 25C
20 10 0 -10 -20 -30 -40 -50 -50 -25 50 25 0 75 TEMPERATURE (C) LT1001A
LT1001A
3 METAL CAN (H) PACKAGE 2 DUAL-IN-LINE PACKAGE PLASTIC (N) OR CERDIP (J)
LT1001
1
100
125
0
1 3 4 2 TIME AFTER POWER ON (MINUTES)
5
1001 G02
1001 G03
Noise Spectrum
10 TA = 25C VS = 3 TO 18V
Long Term Stability of Four Representative Units
10
5
10
1.0
0
3
1/f CORNER 70Hz CURRENT
0.3
-5
1
10
1
10 100 FREQUENCY (Hz)
0.1 1000
1001 G05
-10
0
1
3 2 TIME (MONTHS)
4
5
1001 G06
Input Bias Current Over the Common Mode Range
1.5 1.0
Ib
Input Bias Current vs Differential Input Voltage
30 VS = 15V TA = 25C
- +
DEVICE WITH POSITIVE INPUT CURRENT VS = 15V TA = 25C
20
10
DEVICE WITH NEGATIVE INPUT CURRENT -1.0 COMMON-MODE INPUT RESISTANCE = 28V = 280G 0.1nA 10 -5 0 5 -10 COMMON-MODE INPUT VOLTAGE 15
IB 1 nA to VDIFF = 0.7V 0 0.1 0.3 1.0 3.0 10 DIFFERENTIAL INPUT (VOLTS) 30
1001 G09
1001 G08
LT1001 TYPICAL PERFORMANCE CHARACTERISTICS
Open Loop Voltage Gain vs Temperature
140
OPEN LOOP VOLTAGE GAIN (V/V)
OPEN LOOP VOLTAGE GAIN (dB)
1200k 1000k 800k 600k 400k 200k 0 -50 -25 VS = 15V, VO = 12V VS = 3V, VO = 1V
80 60 40 20 0
VOLTAGE GAIN (dB)
100 VS = 15V
12 8 4 0 -4 GAIN 125C GAIN 25C & -55C VS = 15V PHASE MARGIN -55C = 63 125C = 57 0.2 1 0.5 FREQUENCY (MHz) 2
1001 G12
120 25C PHASE MARGIN = 60 140 160 180 200 220
VS = 3V
50 25 75 0 TEMPERATURE (C)
100
125
-20 0.1
1
10
100 1k 10k 100k 1M 10M FREQUENCY (Hz)
1001 G11
-8 0.1
1001 G10
Common Mode Limit vs Temperature
V+ -0.2 -0.4 -0.6 -0.8 -1.0 140
COMMON MODE REJECTION (dB)
Common Mode Rejection Ratio vs Frequency
140
Power Supply Rejection Ratio vs Frequency
POWER SUPPLY REJECTION (dB)
120 100 80 60 40 20 0 0.1 POSITIVE SUPPLY NEGATIVE SUPPLY VS = 15V 1V p-p TA = 25C
COMMON MODE LIMIT (VOLTS) REFERRED TO POWER SUPPLY
V + = 1.2 to 4V V + = 12 to 18V
120 100 80 60 40 20
+1.0 +0.8 +0.6 +0.4 +0.2 V- -50 -25
V - = -12 to -18V V - = -1.2 to -4V
VS = 15V TA = 25C
0
50 25 75 TEMPERATURE C
100
125
1
10
100 1k 10k FREQUENCY (Hz)
100k
1M
1
10 100 1k FREQUENCY (Hz)
10k
100k
1001 G13
1001 G14
1001 G15
Supply Current vs Supply Voltage
16
Output Swing vs Load Resistance
50
SHORT CIRCUIT CURRENT (mA) SINKING SOURCING
Output Short-Circuit Current vs Time
40 30 20 10 -10 -20 -30 -40 -50 0 1 3 4 2 TIME FROM OPUTPUT SHORT (MINUTES)
1001 G18
-55C 25C 125C VS = 15V 125C 25C -55C
OUTPUT SWING (VOLTS)
2.0
SUPPLY CURRENT (mA)
NEGATIVE SWING
25C -55C 1.5 125C 1.0
12
8
POSITIVE SWING
4 VS = 15V TA = 25C
0.5
3
6 9 12 15 18 21 SUPPLY VOLTAGE (V)
1001 G16
0 100
1000 3k 300 LOAD RESISTANCE ()
10k
1001 G17
5
PHASE SHIFT (DEGREES)
UW
Open Loop Voltage Gain Frequency Response
20 TA = 25C 16 120
Gain, Phase Shift vs Frequency
80 PHASE 25C 100
LT1001 TYPICAL PERFORMANCE CHARACTERISTICS
Small Signal Transient Response
100 VS = 15V TA = 25C VIN = 100mV RL > 50k
PERCENT OVERSHOOT
AV = +1, CL = 50pF
1001 G19
Large Signal Transient Response
OUTPUT VOLTAGE, PEAK-TO-PEAK (VOLTS) 28 24 20 16 12 8 4 0
OUTPUT IMPEDANCE ()
APPLICATIONS INFORMATION
Application Notes and Test Circuits The LT1001 series units may be inserted directly into OP-07, OP-05, 725, 108A or 101A sockets with or without removal of external frequency compensation or nulling components. The LT1001 can also be used in 741, LF156 or OP-15 applications provided that the nulling circuitry is removed. The LT1001 is specified over a wide range of power supply voltages from 3V to 18V. Operation with lower supplies is possible down to 1.2V (two Ni-Cad batteries). However, with 1.2V supplies, the device is stable only in closed loop gains of +2 or higher (or inverting gain of one or higher).
100
* 3
50k
* -15V VO = 1000VOS
6
+
-
U
W
UW
1001 G22
Voltage Follower Overshoot vs Capacitive Load
Small Signal Transient Response
80
60
40
20
0 100
10,000 1000 CAPACITIVE LOAD (PICOFARADS)
100,000
AV = +1, CL = 1000pF
1001 G20
1001 G21
Maximum Undistorted Output vs. Frequency
100 VS = 15V TA = 25C
Closed Loop Output Impedance
10 AV = 1000 1 AV = +1 0.1 IO = 1mA VS = 15V TA = 25C 1 10 1k 100 FREQUENCY (Hz) 10k 100k
1001 G24
0.01
0.001 1 10 100 FREQUENCY (kHz) 1000
1001 G23
U
U
Unless proper care is exercised, thermocouple effects caused by temperature gradients across dissimilar metals at the contacts to the input terminals, can exceed the inherent drift of the amplifier. Air currents over device leads should be minimized, package leads should be short, and the two input leads should be as close together as possible and maintained at the same temperature.
Test Circuit for Offset Voltage and its Drift with Temperature
*50k +15V 2 7 LT1001 4 * RESISTORS MUST HAVE LOW THERMOELECTRIC POTENTIAL. ** THIS CIRCUIT IS ALSO USED AS THE BURN-IN CONFIGURATION FOR THE LT1001, WITH SUPPLY VOLTAGES INCREASED TO 20V.
1001 F01
6
VO
LT1001
Offset Voltage Adjustment
The input offset voltage of the LT1001, and its drift with temperature, are permanently trimmed at wafer test to a low level. However, if further adjustment of Vos is necessary, nulling with a 10k or 20k potentiometer will not degrade drift with temperature. Trimming to a value other than zero creates a drift of (Vos/ 300)V/C, e.g., if Vos is adjusted to 300 V, the change in drift will be 1 V/C. The adjustment range with a 10k or 20k pot is approximately 2.5mV. If less adjustment range is needed, the sensitivity and resolution of the nulling can be improved by using a smaller pot in conjunction with fixed resistors. The example below has an approximate null range of 100 V.
0.1Hz to 10Hz Noise Test Circuit
0.1F
100k 10
VOLTAGE GAIN = 50,000
Improved Sensitivity Adjustment
7.5k 1k 1 7.5k 8 7 LT1001 6 OUTPUT +15V
The device under test should be warmed up for three minutes and shielded from air currents.
INPUT
2.2F TANTALUM
+
3.9k 1N914 0.01 F 300 .1F 200* 2N5160 2N3866 33 1k 1.8k 2N4440
RIN 1k INPUT
10k 15pF
+
3
-
2
4 -15V
1001 F02
DC Stabilized 1000v/sec Op Amp
+15V
2N5486
-15V 3
30k
+
LT1001 6 .001 F
2
-
30k 470
22 2N5160 0.01F 2N3866 200pF 3.9k 15-60pF TUSONIX # 519-3188 200* 1N914 300 0.1F -15V
1001 F04
1k Rf
FULL POWER BANDWIDTH 8MHz
+
DEVICE UNDER TEST 4.7 F
-
LT1001
200pf 390 2N3904
2k
+
LT1001
4.3k
22F SCOPE x1 RIN = 1M 110k
-
100k 24.3k 0.1 F 2.2F
1001 F03
(Peak-to-Peak noise measured in 10 sec interval)
22F TANTALUM
+
2N3904 .5 OUTPUT .5 2N3906
2N4440 22F TANTALUM 1.2k
-
+
*ADJUST FOR BEST SQUARE WAVE AT OUTPUT
7
LT1001
TYPICAL APPLICATIONS
Microvolt Comparator with TTL Output
+5V
1.21M NON INVERTING INPUT INVERTING INPUT 7 2 1% 8 LT1001 3
39.2 1% 5k 5% 4.99k 1% 20k 5% IN914 2N3904
3 100pF 500k 1% 500k 1%
- +
4 -5V
Positive feedback to one of the nulling terminals creates 5 to 20 V of hysteresis. Input offset voltage is typically changed by less than 5 V due to the feedback.
Precision Current Source
5k 5V 3 5k R C RC 10 -4 6 2N3685 2N2219 10k
+ -
7
LT1001 2 4
VIN
0 to (V - + 1V)
1000pF
V - = -2 to -35V
+15V 8.2k 2.0k* 3 4.99k*
+
LT1001 6
LM329
2
-
350 BRIDGE * 301k 10k ZERO
2
-
LT1001 6
3
+
8
U
Photodiode Amplifier
100pF
OUTPUT
2
-
LT1001 6 OUTPUT 1V/A
+
1001 TA03
1001 TA04
Precision Current Sink
V + = 2 to 35V VIN 0 to (V + - 1V) 2 3 V IOUT = IN R 6 2N3685 2N2219 10K
+ -
7
LT1001 4 -5V
V IOUT = IN R
R
1001 TA05
1001 TA06
Strain Gauge Signal Conditioner with Bridge Excitation
+15V 100 2k 2N2219 IN4148 REFERENCE OUT TO MONITORING A/D CONVERTER
3
+
LT1001 6 0 TO 10V OUT 340k*
2
-
1F
IN4148 2N2907 2k 100 5W -15V *RN60C FILM RESISTORS
1.1k* GAIN TRIM
1001 TA07
LT1001
Large Signal Voltage Follower With 0.001% Worst-Case Accuracy
rejections. Worst-case summation of guaranteed specifications is tabulated below.
OUTPUT ACCURACY
+12 to +18V 2 RS 0 to 10k
- +
7 LT1001 6 OUTPUT -10 to +10V
LT1001AM /883 Error Offset Voltage Bias Current Common-Mode Rejection Power Supply Rejection Voltage Gain Worst-case Sum Percent of Full Scale (=20V) 25C Max. 15V 20V 20V 18V 22V 95V 0.0005%
LT1001C 25C Max. 60V 40V 30V 30V 25V 185V 0.0009%
LT1001AM /883 -55 to 125C Max. 60V 40V 30V 36V 33V 199V 0.0010%
LT1001C 0 to 70C Max. 110V 55V 50V 42V 40V 297V 0.0015%
INPUT -10 to +10V
3
4 -12 to -18V
1001 TA08
The voltage follower is an ideal example illustrating the overall excellence of the LT1001. The contributing error terms are due to offset voltage, input bias current, voltage gain, common-mode and power-supply
Thermally Controlled NiCad Charger
+15V
10V, 1.2 AMP HR NICAD STACK
0.1F
+-
* BATTERY
-+
AMBIENT 620k -15V
3
7
+
LT1001
IN4001 6 2k
2
-
4 IN4148 43k -15V
2N6387
CIRCUIT USES TEMPERATURE DIFFERENCE BETWEEN BATTERY PACK MOUNTED THERMOCOUPLE AND AMBIENT THERMOCOUPLE TO SET BATTERY CHARGE CURRENT. PEAK CHARGING CURRENT IS 1 AMP.
10 1F * * SINGLE POINT GROUND THERMOCOUPLES ARE 40 V/C CHROMEL-ALUMEL (TYPE K) *
0.6 5W
1001 TA09
Precision Absolute Value Circuit
10k 0.1% INPUT -10 to 10V 10k 0.1% 3 2 10k 0.1% IN4148 LT1001 6 3 IN4148 10k
1001 TA10
10k 0.1% 2
- +
-
LT1001 6 OUTPUT 0 to 10V
+
0.1%
9
LT1001
Precision Power Supply with Two Outputs (1) 0V to 10V in 100V STEPS (2) 0V to 100V in 1mV STEPS
22k* 100 43k* (select) +15V 100 5W 2k LT1001 +15V 3 8.2k TRIAD TY-90 VN-46 LM399 DIODES = SEMTECH # FF-15 6 2N2219 IN 914 OUTPUT 1 0-10V 25mA
2
- +
KVD 00000 - 99999 + 1 -15V KELVIN-VARLEY DIVIDER ESI#DP311 VN-46
+
4 90k*
OUTPUT 2 0-100V, 25mA
*JULIE RSCH. LABS #R-44 25k 680pF 2
0.1
+
D CLK 33k Q Q
2.2
10k* (select) TRIM-100V 100
-
LT301A 6
2N6533 2k 6 IN914 15 +15 2N2907 CLAMP SET 5k IN914
3
-
LT1001
2
+
+
74C74 22F 1.8k +15V
+
3
33k +15V
33k
1001 TA11
Dead Zone Generator
BIPOLAR SYMMETRY IS EXCELLENT BECAUSE ONE DEVICE, Q2, SETS BOTH LIMITS
INPUT ** 100k ** 100k 2 Q4 10k* Q2 6 8 1 2 2N4393 Q1 30pF 3 IN914 +15V 100k 15pF 2 4.7k 15pF 10k 2N4393 Q6 3.3k Q5 1k * 1% FILM ** RATIO MATCH 0.05% Q2, 3, 4, 5 CA 3096 TRANSISTOR ARRAY VSET VOUT VIN VSET
1001 TA12
-
LM301A
Q3
VSET DEAD ZONE CONTROL INPUT 0 to 5V 47pF 2k
3 100k
+
4.7k
10k*
-
LT1001 6
10k** 10k** 2
-
LT1001 6 VOUT
+
10k
3
+
-
LM301A 6
4.7k
IN914
3
+
-15V
10
LT1001
Instrumentation Amplifier with 300V Common Mode Range and CMRR > 150dB
+15V
820
820 3 10k 2
+
LT1001 6 OUTPUT
-
0.1F
+
330k*
S1 INPUT ** 1F
S3 0.2F ** 909*
S2
S4
200 GAIN TRIM
(ACQUIRE) 01 OUT 74C906 IN IN OUT
(READ) 02 A
74C04
74C86
2k*
2k* C 4022 EN R 10k 1k 1 2 CLK 6 LM301A
+ -
3
2 5.6k* R1 0.1F
1k
LM329 A FLYING CAPACITOR CHARGED BY CLOCKED PHOTO DRIVEN FET SWITCHES CONVERTS A DIFFERENTIAL SIGNAL AT A HIGH COMMON MODE VOLTAGE TO A SINGLE ENDED SIGNAL AT THE LT1001 OUTPUT.
1) ALL DIODES IN4148 2) S1-S4 OPTO MOS SWITCH OFM-1A, THETA-J CORP. 3) *FILM RESISTOR 4) **POLYPROPYLENE CAPACITORS 5) ADJUST R1 for 93 Hz AT TEST POINT A
1001 TA13
Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
11
LT1001
SCHE ATIC DIAGRA
V+ 7 1 40k 6k 8
Q5 Q7 Q3
+ 3
500
Q1A
Q1B
Q2B
- 2
Q10 500 T1 2k 180 Q9 V- 4 Q19 Q20 Q17 Q15
PACKAGE DESCRIPTION
H Package 8-Lead TO-5 Metal Can (0.200 PCD)
(LTC DWG # 05-08-1320)
0.335 - 0.370 (8.509 - 9.398) DIA 0.305 - 0.335 (7.747 - 8.509) 0.040 (1.016) MAX 0.050 (1.270) MAX GAUGE PLANE 0.010 - 0.045* (0.254 - 1.143) 0.016 - 0.021** (0.406 - 0.533) 0.165 - 0.185 (4.191 - 4.699) REFERENCE PLANE 0.500 - 0.750 (12.700 - 19.050)
SEATING PLANE
45TYP 0.027 - 0.034 (0.686 - 0.864)
0.027 - 0.045 (0.686 - 1.143)
0.200 (5.080) TYP
0.110 - 0.160 (2.794 - 4.064) INSULATING STANDOFF *LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE AND 0.045" BELOW THE REFERENCE PLANE 0.016 - 0.024 (0.406 - 0.610)
H8(TO-5) 0.200 PCD 0595
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS
Tjmax ja jc 150C 150C/W 45C/W
0.010 - 0.020 x 45 (0.254 - 0.508) 0.008 - 0.010 (0.203 - 0.254) 0- 8 TYP
0.016 - 0.050 0.406 - 1.270
* DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE ** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
12
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 q FAX: (408) 434-0507 q TELEX: 499-3977
U
W
6k Q27 40k Q28 1.5k Q11 Q6 Q8 Q4 55pF 3k Q31 20pF Q33 20 Q2A 30pF 3k Q21 Q16 Q34 Q26 OUT 6 20 Q13 Q14 Q12 25k Q29 Q24 Q25 Q22 2k Q18 Q23 Q32 Q30 8k 120 240
1001 SS
W
Dimensions in inches (millimeters) unless otherwise noted. J8 Package 8-Lead CERDIP (Narrow 0.300, Hermetic)
(LTC DWG # 05-08-1110)
CORNER LEADS OPTION (4 PLCS) 0.005 (0.127) MIN 0.405 (10.287) MAX 8 7 6 5
8
N8 Package 8-Lead PDIP (Narrow 0.300)
(LTC DWG # 05-08-1510)
0.400* (10.160) MAX 7 6 5
0.023 - 0.045 (0.584 - 1.143) HALF LEAD OPTION 0.045 - 0.068 (1.143 - 1.727) FULL LEAD OPTION
0.025 (0.635) RAD TYP 1 2 3
0.220 - 0.310 (5.588 - 7.874)
0.255 0.015* (6.477 0.381)
0.300 BSC (0.762 BSC)
4
0.200 (5.080) MAX 0.015 - 0.060 (0.381 - 1.524)
1 0.300 - 0.325 (7.620 - 8.255)
2
3
4 0.130 0.005 (3.302 0.127)
0.045 - 0.065 (1.143 - 1.651)
0.008 - 0.018 (0.203 - 0.457) 0.385 0.025 (9.779 0.635)
0 - 15
0.009 - 0.015 (0.229 - 0.381)
0.065 (1.651) TYP 0.005 (0.127) MIN 0.100 0.010 (2.540 0.254) 0.125 (3.175) MIN 0.018 0.003 (0.457 0.076)
N8 0695
0.045 - 0.068 (1.143 - 1.727) 0.014 - 0.026 (0.360 - 0.660)
0.125 3.175 0.100 0.010 MIN (2.540 0.254)
J8 0694
(
+0.025 0.325 -0.015 8.255 +0.635 -0.381
)
0.015 (0.380) MIN
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS.
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)
Tjmax ja 150C 100C/W
Tjmax ja 150C 130C/W
S8 Package 8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG # 05-08-1610)
0.053 - 0.069 (1.346 - 1.752) 8 0.004 - 0.010 (0.101 - 0.254) 0.228 - 0.244 (5.791 - 6.197) 0.150 - 0.157** (3.810 - 3.988) 0.189 - 0.197* (4.801 - 5.004) 7 6 5
0.014 - 0.019 (0.355 - 0.483)
0.050 (1.270) BSC
Tjmax ja 150C 150C/W
1
2
3
4
SO8 0695
LT/GP 0396 2K REV A * PRINTED IN USA
(c) LINEAR TECHNOLOGY CORPORATION 1983


▲Up To Search▲   

 
Price & Availability of LT1001

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X